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Leading-Order Analysis by Artificial Intelligence

Bryan Kaiser, Juan Saenz, & Daniel Livescu

The eye of hurricane Florence
(2018).

Hurricanes “swirl” because the
Coriolis force and pressure gradient
force balance at leading-order, which
causes hurricane winds follow lines
of constant pressure (isobars):

pressure increases with radius
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Image credit: NASA



Structure of this seminar

1. My journey through engineering &
science.

2. What is leading-order analysis?
How important is it in the history of
fluid dynamics, among other natural
sciences?

3. What are supervised and
unsupervised machine learning
and what is artificial intelligence?

4. Al algorithm: an algorithm and
scoring metric for leading-order
analysis by Al

5. Results

6. Conclusions & outlook

Image credit: NASA
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2. What 1s leading-order analysis?

D’Alembert’s paradox (1752)

Since the frictional forces within typical aero/hydrodynamical
flows are typically negligibly small, those forces can be
neglected everywhere. Therefore t/e flow over an immersed
body (e.g. airfoil) should produce no drag forces.

Prandtl (1904)

D rag occurs at the Surface of immersed b.Od.leS be?ause friction Transitional boundary layer. The colored isosurfaces delineate the
is important (meaning: leading-order) within a thin boundary a constant rate of change of vorticity.

layer close to the surface of the body. Image credit: JHU turbulence database,

Leading-order analysis includes several (closely related / overlapping) ideas for simplifying equations:

* Perturbation theory: truncated series expansions of non-dimensionalized variables / equations / perturbations can
be used to eliminate equation terms or discover perturbation dynamics by examining the limits of non-dimensional
variables.

* Method of matched asymptotic expansions. analytically match solutions at domain interfaces to satisfy disparate
boundary conditions (if this is possible, the behavior of the variable is said to be in the “asymptotic regime”).

* Order-of-magnitude analysis: use characteristic scales from observations to eliminate equation terms through the
magnitude of non-dimensional coefficients.



3. Supervised machine learning

A feature vector, X, is fed into a neural network, to obtain the outcome y. The "“true” y is known (labels), so the
weights of the neural network can be nudged towards lower error with respect to the true y (backpropagation). After
many nudges the error converges and there is *hopefully* a good fit.

Activation functions capture nonlinearity
Hidden layers capture levels of abstraction
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3. Supervised machine learning

hidden layer 1 hidden layer 2 hidden layer 3
VR

input layer

output layer
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3. Unsupervised machine learning

A feature vector, X, 1s fed into a clustering algorithm which then finds clusters in N dimensional space (where N is the
number of features) by a stochastic process for optimization or minimization, the details of which depend on the choice of
clustering algorithm.

MiniBatchKMea#néfinityPropagation MeanShift SpectralClustering Ward AgglomerativeClusterinddBSCAN OPTICS Birch GaussianMixture

.10s] A58 07s .06s) 01s
A comparison of the clustering algorithms in scikit-learn




3. Artificial Intelligence

Machine Learning:
Algorithms that generate a prediction or outcome
which improves through experience.

Artificial Intelligence:

Algorithms that mimic functions of the human mind,

such as the scientific method.

The Scientific Method:

1. Formulate a question
2. Formulate a hypothesis
3. Test the hypothesis

4. Analyze the test results

Environments

Propo
theon

Master theories

Divide and conquer\

Theories

Theory Hub

Unification Occam’s Razor

Symbolic theories

Al-physicist /

FIG. 1. AI physicist architecture.

Diagram credit: Wu & Tegmark (2019)



4. Al algorithm: replicating the scientific method

Leading-order
analysis

Observation of differential dynamical system

physicist

1) Recognize different regimes
within observational data

e.g. free stream vs. boundary layer
regions of flow (Prandtl 1904)

v

2) Use empirical data to scale
equation terms in each regime and
neglect terms, either
approximately or through the
method of matched asymptotic
expansions

e.g. boundary layer mean advection
~ turbulent momentum flux balance
(Prandtl 1904)

!

—

task

1) Partition the data into clusters

¢

2) Define a characteristic feature
vector for each cluster

|

3) Define a hypothesis (sparse
feature representation) for each
cluster and agglomerate clusters

with identical hypotheses

!

4) Test hypotheses

——

Hypothesis selection
algorithm

1) Unsupervised learning
algorithm

e.g. K-means (Sonnewald ef al.
2019), GMM (Callaham et al. 2020)

|

2) Dimensionality reduction
algorithm

e.g. SPCA (Callaham et al. 2020),
combinatorial hypothesis selection.

1

3) Performance metric

Magnitude score

!

Minimized description of differential dynamical system




3) Performance metric

4. Al algorithm: magnitude score g o

Basic idea: using a score that ranks how well a chosen set of equation terms leads the remaining equation terms,
select the best set of equation terms (or not, if there are no leading order terms). Each chosen set of equation terms is
a hypothesis, which will be tested calculating the score for that chosen set using the data.
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Example feature vector: X = [

Log of the absolute relative differences XP| — | X9
w.r.t. the absolute maximum in the set of A? = log,, ( ) € (—o00,0),

, 1
features: [ XP| + X9
Ratio of summed relative differences: 5 = } : Al s, = } : Al R =1L ¢ (0, 1],
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Introduce a bias coefficient, which provides N lim B — 1
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a bias towards chosen sets with fewer terms: B = 1
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The magnitude score:
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4. Al algorithm: combinatorial hypothesis selection

U U UV UW

2) Dimensionality reduction Feature VGCtOI’, X ~ [
algorithm oceanic values
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e.g. SPCA(Callahamefal. 202.0), at 103 km scale: ~ [10—10 10—10‘ 10—10, 4 - 10—13‘ 10—6‘ 10—()' 10_23, ].0—23, 6.25 - 10—19].

combinatorial hypothesis selection.
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4. Al algorithm: combinatorial hypothesis selection

Synthetic data:

Randomly generated equations that close with N,= 5 features (equation terms) and 2 to 5 leading-order term
balances, leading by 1 to 40 orders of magnitude. The best score (correct subset selected every time) is plotted:

D/5 —
/ -0.984
0,944
-0.904
Full set score for N,,=51s 5/8 = 0.6 4/5 0.864 0;5'
N, E =}
M = Ty <, 0.824 =
2(iM,7~L - ].) h_\b g_,
- 0.784 w
S
3/5 0.744 ©
The best score converges for leading- 0.704
order terms that lead by about least 0.664
three order of magnitude:
2/5 0.624

0 10 20 30 10
orders of magnitude separation



5. Results: transitional boundary layer
Ju _9u 19p

— I/VQTI.-,
ox

du'v’ Ou'?

dy = Ox

Reynolds-averaged boundary layer equations:

X —

U— U—, —
dr  dy p

V2 = 0%/02° + 0%/ 0y?,

1) Unsupervised learnin
Set free parameters, cluster: ) slgomhm i

e.g. K-means (Sonnewald ef al.
2019), GMM (Callaham et al. 2020)

|

Identlfy balan(%es Wlthlr.l 2) Dimensionality reduction
clusters, combine i1dentical algorithm

clusters: e.g. SPCA (Callaham e al. 2020),
combinatorial hypothesis selection.

Image credit: JHU turbulence database, transitional boundary layer.

Evaluate area-weighted 1 -
3) Performance metric
score for all clusters:

Magnitude score

Loop back to top: repeat for new free parameters



5. Results: why not just use SPCA?

Principal Component Analysis (PCA) + LASSO regression = Sparse PCA

principal component 2

principal component 1

0.0104 = script
== SKLearn
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0.0010 = script
’ = = SKLearn
0.0005 4
0.0000 4 \—//\
—0.0005 1
—0.0010 1
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0 200 400

data points within cluster

principal component

SPCA introduces another free parameter,
the LASSO regression coefficient

y=1cC + cr

50
s data mean
mmemm least squares, ¢ = 5.001, ¢ = 2.038, R= = 0.80

s LASSO., a0 = 1072, ¢; = 5.007. ¢ = 2.036. R? = 0.80

401 —— LASSO. a = 10°, ¢; = 5.600, ¢, = 1.918, R? = 0.80
e LASSO. a = 10!, ¢; = 10. 989 e = 0.840, R? = 0.52
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5. Results: optimization over free parameters

Gaussian Mixture Model (GMM) clustering

0.90 1

0.88 1

0.86 1
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0.80 1

area-weighted cluster mean M score

-

*

[full set score: Ny/(2(Ny —1)) = 0.60]

*  0.9092, K = 16
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Combinatorial Hypothesis Selection (CHS)

for identification & agglomeration

10*

area-weighted cluster mean M score

*  0.8998, K = & a = 10.0000

-
10 15
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SPCA
for identification & agglomeration
(method of Callaham et al. 2020)
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cluster mean features
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5. Results

GMM clustering
+

CHS identification and agglomeration

absolute value

cluster mean features
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5. Results: comparison to no clustering
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6. Conclusions

* By combining the CHS algorithm with a
clustering algorithm, leading-order :
analysis can transformed into an
optimization problem.

* The determination of an appropriate
characteristic feature vector for each .
cluster may be a direction for future work.

wugl “’
* This algorithm could be combined with
PDE-modeling algorithms to create an Al .
dynamical modeler.

* Thank you for listening + questions!

Image credit: NASA




